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Abstract. The massless Thirring model associated with SO(5) is solved in terms of the local
U(1) symmetry. The local U(1) symmetry is related to q-deformation of four-component field
operators due to the nonlinear interaction for different internal degrees of freedom. The Bethe ansatz
wavefunction is also discussed. In addition, the local U(1) symmetry in the Yangian associated
with SO(5)(Y (SO(5))) is explored.

1. Introduction

Recently, it has been proposed by Zhang et al that the antiferromagnetic (AF) and
superconducting (SC) phases of high-Tc cuprates are unified by an approximated SO(5)
symmetry principle [1]. Considerable support for this proposal came from numerical
investigations in models for high-Tc materials. In particular, it was shown that the low-
energy excitations can be classified in terms of an SO(5) symmetry multiplet structure [2, 3].
Subsequently, extended Hubbard models and a two-leg ladder model related to SO(5)
symmetry have been introduced and analysed in detail [4–6]. On the other hand, Shelton
and Sénéchal [7] have studied the problem of two coupled 1D Tomonaga–Luttinger chains
and concluded that approximate SO(5) symmetry can emerge in the low-energy limit of this
model. It is well known that the Luttinger liquid is connected with the massless Thirring
model. It is worthwhile to deal with the massless Thirring model with SO(5) symmetry. The
model can be constructed by the four-component fermionic field operator ψi(x); we shall
show that this model is exactly solvable by the Bethe ansatz method through a local U(1)
transformation, under which the fermionic operator ψi(x) is transformed into a q-deformed
fermionic operator �i(x). This procedure leads to the diagonalization that is shown in a
simple manner by Wadati [8–10]. Furthermore, the study of Yangian algebra [11–14] provides
a significant tool in the formalism of integrable models. The generators of the Yangian can
be realized through currents for a given Lie algebra. It turns out that the current realization
of Y (SO(5)) is not unique and allows a local U(1) gauge transformation. It is interesting to
find the consequence of such a U(1)-freedom according to the q-deformation of the fermionic
operator �i(x).

This paper is organized as follows. In section 2, the massless Thirring model with SO(5)
symmetry will be diagonalized and the Bethe ansatz wavefunction constructed. In section 3,

0305-4470/00/370345+08$30.00 © 2000 IOP Publishing Ltd L345



L346 Letter to the Editor

we shall give the current algebra realization of Y (SO(5)) in terms of q-deformed fermionic
current that gives rise to the local U(1)-gauge transformation.

2. The massless Thirring model with SO(5) symmetry and its Bethe ansatz wavefuction

Let us consider the massless Thirring model constructed by the four-component fermion field
operator ψ(x) = [ψ1(x), ψ2(x), ψ3(x), ψ4(x)]T . The Hamiltonian takes the form

H =
∫ [

iv
4∑
i=1

Ciψ
+
i (x)∂xψi(x) + g

4∑
i,j=1

Cijni(x)nj (x)

]
dx (1)

where Cij = Cji, Cii = 0 and ni(x) = ψ+
i (x)ψi(x) (i, j = 1, 2, 3, 4) satisfy the

anticommutation relations

[ψ+
i (x), ψ

+
j (y)]+ = 0 (2)

[ψi(x), ψj (y)]+ = 0 (3)

[ψi(x), ψ
+
j (y)]+ = δij δ(x − y). (4)

For the four-component fermionic field operator ψ(x) = [cσ (x), d+
σ (x)]

T and forms the
current algebra obeying SO(5) [6]. In momentum space, this Hamiltonian can be written as

H =
∫ [

− v
4∑
i=1

kCini(k)

]
dk

+
g

π

∫ ∫ ∫ [
C12c

+
↑

(
k +
q

2

)
c+
↓

(
− k +

q

2

)
c↓

(
− k′ +

q

2

)
c↑

(
k′ +

q

2

)

+C13c
+
↑

(
k +
q

2

)
d+

↑

(
− k +

q

2

)
d↑

(
− k′ +

q

2

)
c↑

(
k′ +

q

2

)

+C14c
+
↑

(
k +
q

2

)
d+

↓

(
− k +

q

2

)
d↓

(
− k′ +

q

2

)
c↑

(
k′ +

q

2

)

+C23c
+
↓

(
k +
q

2

)
d+

↑

(
− k +

q

2

)
d↑

(
− k′ +

q

2

)
c↓

(
k′ +

q

2

)

+C24c
+
↓

(
k +
q

2

)
d+

↓

(
− k +

q

2

)
d↓

(
− k′ +

q

2

)
c↓

(
k′ +

q

2

)

+C34d
+
↑

(
k +
q

2

)
d+

↓

(
− k +

q

2

)
d↓

(
− k′ +

q

2

)
d↑

(
k′ +

q

2

)]
dk dk′ dq (5)

that obviously is made up of pairs, so this model may be applied to SC.
To diagonalize H , we introduce the local U(1) transformation

�i(x) = exp

[
− i

4∑
k=1

θikφk(x)

]
ψi(x) (6)

where φi(x) = ∫ x
−∞ ψ

+
i (y)ψi(y) dy and θik are constants.

According to equations (2)–(4) and (6) by direct calculation, we obtain (no summation
over the repeated j )

�i(x)�j (y) = − exp[iθij ]�j(y)�i(x) (7)

�+
i (x)�

+
j (y) = − exp[iθij ]�

+
j (y)�

+
i (x) (8)

�i(x)�
+
j (y) = − exp[−iθij ]�

+
j (y)�i(x) + δij δ(x − y). (9)
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This is a special case of Zamolodchikov–Faddeev algebra [15, 16]:

θii = 0 (mod 2π) (10)

θij + θji = 0 (mod 2π). (11)

Therefore, equations (10) and (11) are conditions given by the associativity of the special
case of Zamolodchikov–Faddeev algebra. The meaning of equation (10) is clear: that the
particle itself must still be a fermion for the same ‘i-spin’ states; however, equation (11)
show that the commutation relations between different ‘i-spin’ states can be q-deformed and
the q-deformation parameters should obey equation (11) because of the two-body interaction
between different ‘i-spin’ states.

Under the local U(1) transformation equation (6), the Hamiltonian equation (1) can be
diagonalized and we can find the physical constraint conditions for real Ci and Cij . The
Heisenberg equation i∂tψi(x, t) = [ψi(x, t),H ] reads

∂tψi(x, t) = vCi∂xψi(x, t)− i2g
4∑
j=1

Cijnj (x, t)ψi(x, t). (12)

On account of the transformation equation (6) and the Heisenberg equation (12), we obtain

∂t�i(x, t)− vCi∂x�i(x, t) = i
4∑
j=1

[v(Ci − Cj)θij − 2gCij ]nj (x, t)ψi(x, t)

× exp

[
− i

4∑
k=1

θjkφk(x)

]
. (13)

By choosing

θij = 2g

v

Cij

Ci − Cj (Ci �= Cj) (14)

θii = 0 (15)

�i(x, t) satisfy the free-field equation. The Hamiltonian becomes diagonalized (here we
suppose Ci �= Cj ; if Ci = Cj , the Hamiltonian can be diagonalized only when Cij = 0):

H ′ = iv
4∑
i=1

Ci

∫
�+
i (x)∂x�i(x) dx. (16)

The direct calculation shows that �i(x) and H ′ also satisfy the Heisenberg equation
i∂t�i(x, t) = [�i(x, t),H ′], so �i(x, t) are really dynamic variables regarding H ′.

Therefore, by using the local U(1) transformation equation (6), the original Hamiltonian
equation (1) constructed by ψi(x) with anticommutation relation equations (2)–(4) has been
transformed into the quadratic Hamiltonian equation (16) in terms of the �i(x) obeying q-
deformed relation equations (7)–(9). In the following, we shall show how the method in [8–10]
works to find the Bethe ansatz wavefunction in a simple manner for theSO(5)massless Thirring
model.

Let us denote by | n1, n2, n3, n4〉 an eigenstate with ni �i-particles (i = 1, 2, 3, 4); it can
be expressed by

|n1, n2, n3, n4〉 =
∫

· · ·
∫ M∏
j=1

dxj ϕ(x1, . . . , xM)

n1∏
j1=1

�+
1(xj1)

×
n2∏
j2=1

�+
2(xM1+j2)

n3∏
j3=1

�+
3(xM2+j3)

n4∏
j4=1

�+
4(xM3+j4)|0〉 (17)
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whereMi = n1 + n2 + . . . + ni ,M = M4 and |0〉 is the vacuum defined by

ψj(x)|0〉 = 0 (18)

or equivalently

�j(x)|0〉 = 0. (19)

Substituting equations (16) and (17) into the Schrödinger equation

H ′|n1, n2, n3, n4〉 = En1,n2,n3,n4 |n1, n2, n3, n4〉 (20)

yields an equation for ϕ(x1, . . . , xM):

iv

( 4∑
i=1

Ci

ni∑
ji=1

∂

∂xMi−1+ji

)
ϕ(x1, . . . , xM) = En1,n2,n3,n4ϕ(x1, . . . , xM) (21)

whose solution is

ϕ(x1, . . . , xM) = A exp

(
i
M∑
j=1

kjxj

)

En1,n2,n3,n4 = −v
( 4∑
i=1

Ci

ni∑
ji=1

kMi−1+ji

) (22)

where kj and A are constants. Since the constant A is not essential, we shall omit it hereafter.
The Bethe ansatz wavefunction ϕ̂(x1, . . . , xM) is defined by

|n1, n2, n3, n4〉 =
∫

· · ·
∫ M∏
j=1

dxj ϕ̂(x1, . . . , xM)

n1∏
j1=1

ψ+
1 (xj1)

×
n2∏
j2=1

ψ+
2 (xM1+j2)

n3∏
j3=1

ψ+
3 (xM2+j3)

n4∏
j4=1

ψ+
4 (xM3+j4)|0〉. (23)

Substituting equation (6) into (17), by detailed calculation, we have

|n1, n2, n3, n4〉 =
∫

· · ·
∫ M∏
j=1

dxjϕ(x1, . . . , xM)
∏

1�p<q�4

np∏
jp=1

nq∏
jq=1

× exp[iθpqθ(xMp−1+jp − xMq−1+jq )]

×
n1∏
j1=1

ψ+
1 (xj1)

n2∏
j2=1

ψ+
2 (xM1+j2)

n3∏
j3=1

ψ+
3 (xM2+j3)

n4∏
j4=1

ψ+
4 (xM3+j4)|0〉

∼
∫

· · ·
∫ M∏
j=1

dxjϕ(x1, . . . , xM)
∏

1�p<q�4

np∏
jp=1

nq∏
jq=1

×
[

1 − i tan
θpq

2
ε(xMp−1+jp − xMq−1+jq )

]

×
n1∏
j1=1

ψ+
1 (xj1)

n2∏
j2=1

ψ+
2 (xM1+j2)

n3∏
j3=1

ψ+
3 (xM2+j3)

n4∏
j4=1

ψ+
4 (xM3+j4)|0〉 (24)

where θ(x) = 0 (if x < 0); 1 (if x > 0) and ε(x) = θ(x)− θ(−x) hereafter. Thus, the Bethe
ansatz wavefunction ϕ̂(x1, . . . , xM) takes the form

ϕ̂(x1, . . . , xM) = exp

[
i
M∑
j=1

kjxj

] ∏
1�p<q�4

np∏
jp=1

nq∏
jq=1

[
1 − itg

θpq

2
ε(xMp−1+jp − xMq−1+jq )

]

(25)
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which describes the many-body problem with δ-interactions.
Suppose thatM particles move in a region with the length L. For an arbitrary xj (Mp−1 �

j � Mp), imposing the periodical boundary conditions (PBCs), we have

kjL = −i
4∑
q �=p
q=1

nq ln
1 − itgθpq/2

1 + itgθpq/2
+ 2ljπ (lj integer) (26)

i.e.

kjL = −
4∑
q �=p
q=1

nqθpq + 2ljπ (lj integer) (27)

that is exactly the Bethe ansatz equation. Obviously, the localU(1) transformation equation (6)
greatly helps the derivation of the Bethe ansatz condition for the massless Thirring model.

3. Current realization of Y (SO(5))

The SO(5) algebra does have a current realization; however, the fermionic construction is not
unique. In parallel to the diagonalization of equation (1) we shall show that the q-deformed
operators�i(x) shown in equation (6) also provide a realization of SO(5) algebra, henceforth
the Yangian associated with SO(5).

The original commutation relations of Y (g) were given by Drinfled [17, 18] in the form

[Iλ, Iµ] = cλµνIν [Iλ, Jµ] = cλµνJν (28)

[Jλ, [Jµ, Iν]] − [Iλ, [Jµ, Jν]] = h2aλµναβγ {Iα, Iβ, Iγ } (29)

[[Jλ, Jµ], [Iσ , Jτ ]] + [[Jσ , Jτ ], [Iλ, Jµ]] = h2(aλµναβγ cστν + aστναβγ cλµν){Iα, Iβ, Iγ }
(30)

where cλµν are structure constants of a simple Lie algebra g, h is a constant and

aλµναβγ = 1

4!
cλασ cµβτ cνγρcστρ {x1, x2, x3} =

∑
i �=j �=k

xixjxk. (31)

For Lie algebra SO(5), Y (SO(5)) is generated by antisymmetric generators {Iab, Jab}.
Equation (28) reads

[Iab, Icd ] = i(δbcIad + δadIbc − δacIbd − δbdIac) (32)

[Iab, Jcd ] = i(δbcJad + δadJbc − δacJbd − δbdJac)
Iab = −Iba Jab = −Jba (a, b, c, d = 1, 2, 3, 4, 5).

(33)

Not all of the relations in equations (29) and (30) are independent. After tedious calculation
we can prove that there is only one independent relation:

[J23, J15] = i

24
h2({I13, I42, I45} + {I12, I45, I34} − {I14, I42, I35} − {I14, I34, I25}) (34)

where J23 and J15 are the Cartan subset.
All the relations other than equation (28) can be generated on the basis of equation (34)

by using Jacobi identities together with equations (32) and (33). Therefore, for Y (SO(5)),
equations (28)–(30) can be expressed with equations (32)–(34) in such a simple manner.
This conclusion can also be verified by the RTT relation independently through tremendous
computation.
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The generators of Y (SO(5)) can be realized by fermionic current algebra as follows:

Iab =
∫
Iab(x) dx Iab(x) = − 1

2ψ
+(x)8abψ(x)

Jab = Tab + UJ 0
ab Tab =

∫
dx ψ+(x)8ab∂xψ(x)

J 0
ab =

∫ ∫
dx dy ε(x − y)Iac(x)Icb(y)

(35)

where 8ab = −i8a8b, 8a are 4 × 4 Dirac matrices, U = ± i
2h (h being an arbitrary constant)

and ψ(x) satisfies anticommutation relation equations (2)–(4). It can be checked that the set
{Iab, Jab} satisfies algebraic relation equations (32)–(34) of Y (SO(5)).

As given by [6] if ψ(x) = [cσ (x), dσ (x)]T , then local generators Iab(x) of Lie algebra
SO(5) are expressed in terms of spin �S(x) = 1

2 (c
+(x)�σc(x) + d+(x)�σ , d(x)), charge

Q(x) = 1
2 (c

+(x)c(x) + d+(x)d(x)− 2) and �π+(x) = − 1
2c

+(x)�σσ2d
+(x) with

Iab(x) =




0
π+

1 (x) + π1(x) 0
π+

2 (x) + π2(x) −S3(x) 0
π+

3 (x) + π3(x) S2(x) −S1(x) 0
Q(x) i(π1(x)− π+

1 (x)) i(π2(x)− π+
2 (x)) i(π3(x)− π+

3 (x)) 0


 (36)

where the values of matrix elements on the upper right triangle are determined by antisymmetry,
Iab(x) = −Iba(x).

Under the local U(1) transformation equation (6), the four-component fermionic field
operator ψ(x) = [ψ1(x), ψ2(x), ψ3(x), ψ4(x)]T is changed into the q-deformed operator
�(x) = [�1(x),�2(x),�3(x),�4(x)]T . The generators of Y (SO(5)) are constructed by
q-deformed fermionic current algebra as follows:

I ab =
∫
I ab(x) dx Iab(x) = − 1

2�
+(x)8ab�(x)

J ab = T ab + UJ
0
ab T ab =

∫
dx �+(x)8ab∂x�(x)

J
0
ab =

∫ ∫
dx dy ε(x − y)I ac(x)I cb(y).

(37)

Substituting equation (37) into (32)–(34), we can obtain the constraint conditions

θim − θjm = θin − θjn (mod 2π)

(i, j,m, n = 1, 2, 3, 4)
(38)

where equation (38) sets the condition making Y (SO(5)) constructed by the q-deformed field
operator �(x). This indicates that the current realization of Y (SO(5)) is not unique. Careful
calculation shows that there are three free parameters in θij under condition equations (10),
(11) and (38), so there exists an additional freedom in Y (SO(5)). Substituting equation (14)
into (38), we obtain
Cim

Ci − Cm − Cjm

Cj − Cm = Cin

Ci − Cn − Cjn

Cj − Cn (mod 2π) (i, j,m, n = 1, 2, 3, 4).

(39)

In another words, H ′ is the Hamiltonian expressed by �i(x); under the transformation
equation (6), it becomes H where two-body interaction appears. Consequently the physical
meaning of U(1) transformation in Y (SO(5)) is connected with the two-body interaction in
the massless Thirring model with SO(5) symmetry.

From the above analysis we see that there is a local U(1) gauge invariance in the
construction of the current algebra realization for Y (SO(5)).
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Under the local U(1) transformation equations (6), (36) is changed into

I ab(x) =




0
π+

1(x) + π1(x) 0
π+

2(x) + π2(x) −S3(x) 0
π+

3(x) + π3(x) S2(x) −S1(x) 0
Q(x) i(π1(x)− π+

1(x)) i(π2(x)− π+
2(x)) i(π3(x)− π+

3(x)) 0


 (40)

where the value of matrix elements on the upper right triangle are determined by antisymmetry,
I ab(x) = −I ba(x), and
(
S1(x)

S2(x)

S3(x)

)
=


 cos

(
α+β

2 φ(x)
)

cos
(
α−β

2 φ(x)
)

− sin
(
α+β

2 φ(x)
)

cos
(
α−β

2 φ(x)
)

0

sin
(
α+β

2 φ(x)
)

cos
(
α−β

2 φ(x)
)

cos
(
α+β

2 φ(x)
)

cos
(
α−β

2 φ(x)
)

0

0 0 1




(
S1(x)

S2(x)

S3(x)

)

+


 − sin

(
α+β

2 φ(x)
)

sin
(
α−β

2 φ(x)
)

− cos
(
α+β

2 φ(x)
)

sin
(
α−β

2 φ(x)
)

0

cos
(
α+β

2 φ(x)
)

sin
(
α−β

2 φ(x)
)

− sin
(
α+β

2 φ(x)
)

sin
(
α−β

2 φ(x)
)

0

0 0 1




(
N1(x)

N2(x)

N3(x)

)

(41)
(
π+

1(x)

π+
2(x)

)
= exp

(
i
νφ(x)

2

) 
 cos

(
α+β

2 φ(x)
)

− sin
(
α+β

2 φ(x)
)

sin
(
α+β

2 φ(x)
)

cos
(
α+β

2 φ(x)
)


 (

π+
1 (x)

π+
2 (x)

)
(42)

π+
3(x) = exp

(
i
νφ(x)

2

) [
cos

(
α − β

2
φ(x)

)
π+

3 +
1

2
<+(x) sin

(
α − β

2
φ(x)

)]
(43)

where φ(x) = ∑4
i=1 φi(x), θ43 = β, θ12 = α, θ13 − θ42 = ν, SC order parameter

<+(x) = −ic+(x)σ2d
+(x) and AF order parameter �N(x) = 1

2 (c
+(x)�σc(x)− d+(x)�σd(x)).

From the above analysis we see that under the U(1) transformation equations (6), (37)
still obey Yangian algebra as equation (35) does if θij satisfy the condition equations (10),
(11) and (38). This indicates that there is a local U(1) gauge invariance in the construction
of the current realization for Y (SO(5)). It turns out that after the transformation, there are
local phase factors in the current realization of Y (SO(5)) (shown by equations (41)–(43), but
equation (37) still satisfies Y (SO(5)) Yangian algebraic relations, i.e. there is a local U(1)
gauge invariance in such a current realization of Y (SO(5)).

We also find that the transformation equation (6) can be used to diagonalize the massless
Thirring model with SO(5) symmetry, that will help to understand the physical meaning of
the introduced local U(1) symmetry.

In another words, H ′ is the Hamiltonian expressed by �i(x); under the transformation
equation (6), it becomes H where two-body interaction appears. So the physical meaning
of U(1) transformation in the current realization of Y (SO(5)) is connected with two-body
interaction in this physical model. Applying the transformation we find the local U(1) gauge
invariance in Y (SO(5)) explicitly.

We note that there are some non-trivial phase factors in the generators of the Yangian,
but they still satisfy the commutation relations of Y (SO(5)), i.e. there is a local U(1) gauge
invariance in Y (SO(5)).

4. Conclusion

Using a local U(1) transformation connecting the four-component fermionic field operator
ψi(x) with the q-deformed one�i(x), it is helpful to diagonalize the massless Thirring model
with SO(5) symmetry. The Bethe ansatz wavefunction is obtained in a simple manner. It turns
out that the current realization of Y (SO(5)) is not unique and there exists a local U(1) gauge
transformation. This shows the existence of a local U(1) symmetry in the current realization
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of Y (SO(5)). Correspondingly, the transformation leads to the local U(1)-gauge invariance
for Y (SO(5)). The explicit forms of phase factors for SO(5) have been shown.

The authors would like to thank Dr Jing-Ling Chen for helpful discussion. This work is, in
part, supported by the NSF of China.
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